

Year 6: Understanding Shape

Previous Slide	Back to Contents (this slide)					
Next Slide	CLICKI Action Button (click when it flashes)					
Contents - Please click the Go Button						
Classifying Triangles	601	Using Co-ordinate in 4 Quadrants	GOI			
Using a Flow Chart	GO!	Parallel & Perpendicular Lines	GO!			
3D Shapes	GOI	Symmetry	60!			
Faces, Edges & Vertices	GO!	Translation	GOI			
Net Shapes	601	Rotational Symmetry	60!			
Using Co-ordinates	GOI	Measuring and Estimating Angles	GO!			

Classifying Triangles Click on the triangle to reveal its properties

60°

An equilateral triangle. All sides are the same length. All angles are the same (60°).

A right angled triangle. One of its corners is a right angle.

A scalene triangle. All the angles and sides are different.

A isosceles triangle. Two angles are the same, and two sides are the same length.

www.visuallessons.com

x°

3D Shapes: Faces, edges and vertices.

Vertices. These are corners of a 3D shape. This cube has 8 vertices.

Name of Shape	Image	No. of faces	No. of edges	No. of vertices
Cuboid		?	?	?
Square based Pyramid		?	?	?
Cylinder		?	?	?
Triangular Prism		?	?	?
Hexagonal Prism		?	?	?
Check.				

Can you fill in the missing parts of this table? Click on the ? to reveal the answer...

00

This net shape will make a cube.

Using Co-ordinates

The co-ordinates of this point are (5,6)

Co-ordinates are used to identify where a point can be found.

They are written in brackets. The first number is how many squares along, the second number is how many squares up!

The co-ordinates of this cross are (3,3)

(3,4)

What are the co-ordinates of each corner of these shapes? Click on the co-ordinates to place them

Plot these points on the graph paper: Click a coordinate to plot the corner.

This shape is a oblong. What are the co-ordinates of D?

This is an equilateral triangle. What are the co-ordinates of F?

Co-ordinates in all 4 quadrants

CLICK

This is the second quadrant. Typical coordinates might be (-5,6)

X 5 squares backwards, 6 squares up This is the first quadrant. Typical co-ordinates might be (5,6)

5 squares across, 6 squares up

Х

This is the third quadrant. Typical coordinates might be (-5,-6)

5 squares backwards, 6 squares down

X

This is the fourth quadrant. Typical coordinates might be (5,-6)

X 5 squares across, -6 squares down

Can you work out the co-ordinates of each corner of the 4 triangles?

Plot these points and join them (in order) to reveal a 4 letter word.

Parallel Lines

A train needs to run on parallel lines, otherwise it wouldn't be very safe!

> Parallel lines are lines that are always the same distance apart, and never meet.

> > Check.

CLICK!

Reveal Answer

www.visuallessons.com

Perpendicular Lines

Perpendicular Lines

This oblong has 4 perpendicular lines

Perpendicular Lines are lines that join at right angles (90°)

How many perpendicular lines can you see on these shapes? Click each shape to reveal the answers

Symmetry

A line of symmetry is where a shape can be divided into two exact equal parts.

A line of symmetry can also be called a mirror line. Either side of the mirror line looks exactly the same.

This is a line of symmetry for a square. Notice that both halves of the square are exactly the same.

What will this shape look like reflected in the different quadrants?

CLICK!

Measuring Angles

Can you Estimate the Angles? Click on the angles to match them to the corners

L

