Year 6: Understanding Shape

Previous Slide
Next Slide

©
Back to Contents (this slide)
[Cuck: Action Button
(click when it flashes)

Contents - Please click the Go Button

Classifying Triangles	G0.)	Using Co-ordinate in 4 Quadrants	(60)
Using a Flow Chart	(60)	Parallel \& Perpendicular Lines	(60)
3D Shapes	(60)	Symmetry	(60)
Faces, Edges \& Vertices	GO!)	Translation	GO1)
Net Shapes	G01)	Rotational Symmetry	GO.)
Using Co-ordinates	(60)	Measuring and Estimating Angles	(60)

Classifying Triangles

Click on the triangle to reveal its properties

An equilateral triangle. All sides are the same length. All angles are the same $\left(60^{\circ}\right)$.

A right angled triangle. One of its corners is a right angle.

A scalene triangle. All the angles and sides are different.

A isosceles triangle. Two angles are the same, and two sides are the same length.

3D Shapes

A cuboid.

A cube

Square based pyramid

3D shapes are difficult to see on a 2D screen, but we'll have a go! Click on a shape to reveal its name.

A triangular prism

A hexagonal prism.

3D Shapes: Faces, edges and vertices.

Faces. This
cube will have 6 faces.

Vertices. These are corners of a 3D shape. This cube has 8 vertices.

Edges. This is where faces meet. This cube has 12 edges.

Name of Shape	Image	No. of faces	No. of edges	No. of vertices
Cuboid		$? ?$	$?$	$? ?$
Square based Pyramid		$?$	$?$	$? ?$
Cylinder		$?$	$?$	$? ?$
Triangular Prism			$?$	$?$
Hexagonal Prism			$?$	$?$

Can you fill in the missing parts of this table?
Click on the ? to reveal the answer...

Net Shapes

This net shape will make a cube.

Using Co-ordinates

The co-ordinates of this point are $(5,6)$

Co-ordinates are used to identify where a point can be found.

They are written in brackets. The first number is how many squares along, the second number is how many squares up!

What are the co-ordinates of each corner of these shapes?

 Click on the co-ordinates to place them| $(1,7)$ | 8 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(8,5)$ | 7 | | | | | | | | |
| $(1,4)$ | 5 | | | | | | | | |

$(2,3)$

 $(6,7)$ Draw Shape

Plot these points on the graph paper: Click a coordinate to plot the corner.

What shape does it make?

This shape is a oblong. What are the co-ordinates of D ?

This is an equilateral triangle. What are the co-ordinates of F?

Co-ordinates in all 4 quadrants

This is the second quadrant. Typical coordinates might be $(-5,6)$

X

5 squares backwards, 6 squares up

This is the first quadrant.
Typical co-ordinates might be $(5,6)$

X

5 squares across, 6 squares up

This is the fourth quadrant. Typical coordinates might be $(5,-6)$

5 squares across, -6 squares down

Can you work out the co-ordinates of each corner of the 4 triangles?

$1^{\text {st }}$ Letter: $(-8,2),(-8,6)$, $(-10,6),(-6,6)$

$2^{\text {nd }}$ Letter: $(8,2),(4,2)$,
$(4,6),(8,6),(6,4),(4,4)$

$4^{\text {th }}$ Letter: $(-10,-8),(-10,-4),(-8,-6)$, $(-6,-4),(-6,-8)$

Plot these points and join them (in order) to reveal a 4 letter word.

Parallel Lines

A train needs to run on parallel lines, otherwise it wouldn't be very safe!

How many parallel lines do these shapes have?

Reveal
Answer

Perpendicular Lines

Perpendicular Lines

Perpendicular Lines are lines that join at right angles $\left(90^{\circ}\right)$

This oblong has 4 perpendicular lines

Symmetry

A line of symmetry is where a shape can be divided into two exact equal parts.

A line of symmetry can also be called a mirror line. Either side of the mirror line looks exactly the same.

This is a line of symmetry for a square. Notice that both halves of the square are exactly the same.

What will this shape look like reflected in the different quadrants?

What will this shape look like reflected in the different quadrants?

Translation

Translation: Translation means moving a shape to a new location. Watch these examples:

$\sqrt{4} \sqrt{4}$
Finding Right Angles
Click on a shape to reveal all its right angles!

www.visuallessons.com

Measuring Angles

This is a protractor! It is used to measure angles.
Click an angle to see what it looks like:
There are 90° in a right angle.

All of these small marks are degrees.

Measuring Angles

Measuring Angles

Measuring Angles

Can you Estimate the Angles?

Click on the angles to match them to the corners

