Round decimals to the nearest whole number

Learning Objective

 Simplifying
ractions

Simplified Fractions

To simplify a fraction, we find an equivalent fraction which uses the smallest numbers possible.

$$
\begin{aligned}
& 24 \div 2 \\
& 40 \div 2
\end{aligned} \frac{12}{24 \div} \begin{aligned}
& \text { 24 } \\
& \hline \mathbf{4 0} \div 4 \\
& \text { tables for this! } \\
& \text { Ask yourself, what can I } \\
& \text { divide both } 24 \text { and } 40 \text { by? }
\end{aligned}
$$

We do this by dividing.

Look at this one

28
56

The first thing I notice is that 28 and 56 are both in the 7 times table. So I'm going to divide both numbers by 7 .

Is this simplified?
I can still divide both numbers by 4.

$$
\frac{4}{8} \div 4=1
$$

Let's work through this together.

$\frac{48}{60}$

Try this one with a partner
$\frac{21}{63}$

Try this one with a partner

$\frac{45}{90}$

Try this one with a partner

32
56

Round Decimal numbers to the nearest $10^{\text {th }}$ or $100^{\text {th }}$

Learning Objective

Consolidate recognition of equivalent fractions.

Equivalent fractions

We are learning about equivalent fractions

1 whole							
$1 / 2$			$1 / 2$				
$1 / 4$		$1 / 4$		$1 / 4$		$1 / 4$	
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	

We can see that

$$
1 / 1=2 / 2=4 / 4=8 / 8
$$

They are equivalent fractions

1 whole							
$1 / 2$				$1 / 2$			
$1 / 4$		$1 / 4$		$1 / 4$		$1 / 4$	
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

We can see that $2 / 8$ is the same length as $1 / 4$

$$
\text { So } 2 / 8=1 / 4
$$

They are equivalent fractions

Which fractions are equivalent to $\frac{1}{2} ?$

1 whole

$$
1 / 2=2 / 4=4 / 8
$$

1 whole												
$1 / 2$									$1 / 2$			
$1 / 4$		$1 / 4$		$1 / 4$		$1 / 4$						
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$					

Which of these fractions is equivalent to $1 / 4$?

WEL DONE!

1 whole											
$1 / 2$								$1 / 2$			
$1 / 4$		$1 / 4$	$1 / 4$		$1 / 4$						
$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$					

Which of these fractions is equivalent to $4 / 8$?

WEL DONE:

$$
1 / 3=2 / 6=4 / 12
$$

Look at the equivalent fractions - each time the numerators double, the denominators also double. Which other fraction will be equivalent?

TRYACATN!

Equivalent Fractions

Fraction chart

We can see that $1 / 2$ is the same as $2 / 4,3 / 6,4 / 8$ and 5/10.
These are EQUIVALENT FRACTIONS.

Find me an equivalent of:

How do we know that two fractions are the same?

We cannot tell whether two fractions are the same until we simplify them to their lowest terms.

A fraction is in its lowest terms (simplified) if we cannot find a whole number (other than 1) that can divide into both its numerator and denominator (A common factor). Examples:
$\frac{6}{10} \quad$ is not reduced because 2 can divide into both 6 and
10 .

35 is not reduced because 5 divides into both 35 and 40.

How do we know that two fractions are the same?
More examples:

110 is not reduced because 10 can divide into $\overline{260}$ both 110 and 260 .
$\frac{8}{15}$ is reduced.
15
11 is reduced
23
To find out whether two fraction are equal, we need to reduce them to their lowest terms.

How do we know that two fractions are the same? Examples:

Are $\frac{14}{21}$ and $\frac{30}{45}$ equal?
$\frac{14}{21} \xrightarrow{\text { reduce }} \frac{14 \div 7}{21 \div 7}=\frac{2}{3}$
$\frac{30}{45} \xrightarrow{\text { reduce }} \frac{30 \div 5}{45 \div 5}=\frac{6}{9} \xrightarrow{\text { reduce }} \frac{6 \div 3}{9 \div 3}=\frac{2}{3}$
Now we know that these two fractions are actually the same!

How do we know that two fractions are the same?
Another example:
Are $\frac{24}{40}$ and $\frac{30}{42}$ equal?
$\frac{24}{40} \xrightarrow{\text { reduce }} \frac{24 \div 2}{40 \div 2}=\frac{12}{20} \xrightarrow{\text { reduce }} \frac{12 \div 4}{20 \div 4}=\frac{3}{5}$
$\frac{30}{42} \xrightarrow{\text { reduce }} \frac{30 \div 6}{42 \div 6}=\frac{5}{7}$
This shows that these two fractions are not the

Simplify the following ractions...

Ordering fractions

If the DENOMINATOR is the same, look at the NUMERATORS, and put the fractions in order.
$\frac{1}{9} \quad \frac{2}{9} \quad \frac{3}{9} \quad \frac{4}{9} \quad \frac{7}{9}$
(if ordered smallest \longrightarrow largest)

Ordering fractions

If the DENOMINATOR is different, we have a problem that must be dealt with differently.
$\frac{3}{6} \quad \frac{7}{8} \quad \frac{4}{4} \quad \frac{1}{3} \quad \frac{2}{4}$

We need to convert our fractions to EQUIVALENT fractions of the same DENOMINATOR. We will come back to this example.

Ordering fractions

If the DENOMINATOR is the different, we have a problem that must be dealt with differently.

Here's an easier example, with just 2 fractions to start us off.

Ordering fractions

Look at the denominators. We must look for a COMMON MULTIPLE.

This means that we check to see which numbers are in the 6 times table, and the 9 times table. We need a number that appears in both lists.

Ordering fractions

Look at the denominators. We must look for a COMMON MULTIPLE.

Multiples of 6 are

$6,12,18,24,30,36,42,48,54,60 \ldots \ldots$.

Multiples of 9 are

$$
9,18,27,36,45,54,63,72,81,90 .
$$

Ordering fractions

COMMON MULTIPLES are：

Multiples of 6 are
$6,12,18,24,30,36,42,48,54,60 \ldots \ldots$

Multiples of 9 are

$$
9,18,27,36,45,54 \ldots \ldots
$$

Ordering fractions

COMMON MULTIPLES are:

18,36 and 54. There are others that are higher,
 but we only look at smaller numbers.

Remember: Smaller numbers are SIMPLER.

18 is the smallest number that is common, so we'll use this.

Ordering fractions

We need to convert these fractions so they have the same denominator.

Ordering fractions

We need to convert these fractions so they have the same denominator.

$$
\frac{4}{6} \xrightarrow[x 3]{x} \frac{12}{18}
$$

Ordering fractions

We need to convert these fractions so they have the same denominator.

$$
\frac{3}{9} \xrightarrow[\times 2]{\times 2} \frac{?}{18}
$$

Ordering fractions

We need to convert these fractions so they have the same denominator.

$$
\frac{3}{9} \xrightarrow[x^{2}]{x^{2}} \frac{6}{18}
$$

Ordering fractions

So these fractions:

Are EQUIVALENT to these ones:

Ordering fractions

And this is the correct order

Because these EQUIVALENT FRACTIONS are in order

$\frac{6}{18} \quad \frac{12}{18}$

Ordering fractions

Remember our example

$\frac{3}{6} \quad \frac{7}{8} \quad \frac{4}{4} \quad \frac{1}{3} \quad \frac{2}{4}$
$\frac{3}{6} \frac{7}{8} \frac{4}{4} \frac{1}{3} \frac{2}{4}$

The LOWEST COMMON DENOMINATOR is 24 check for all the multiples of the DENOMINATORS. 24 is the first number to appear in all the lists.

Ordering fractions

Convert to 24ths

The LOWEST COMMON DENOMINATOR is 24 check for all the multiples of the DENOMINATORS 24 is the first number to appear in all the lists.

Ordering fractions

Convert to 24ths

This tells you how large our fractions are. Check which order they go in.

Ordering fractions

Convert to 24ths

This tells you how large our fractions are. Check which order they go in.

Ordering fractions

So this is the correct order

Ordering Fractions 2

If we want to order fractions, we need to make sure our working out is clear.

For every question, please use the following method.

$$
\frac{5}{9} \quad \frac{7}{12} \quad \frac{3}{6} \quad \frac{3}{4}
$$

Ordering Fractions 2

$$
\begin{array}{lllll}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \quad \begin{array}{l}
\text { Look at the DENOMINATORS. } \\
\text { What are the MULTIPLE SS? }
\end{array} \text {. }
\end{array}
$$

Ordering Fractions 2

$$
\frac{5}{9} \quad \frac{7}{12} \quad \frac{3}{6} \quad \frac{3}{4}
$$

9: $9,18,27,36,45,54, \ldots$
12: $12,24,36,48,60, \ldots$
6: $6,12,18,24,30,36,48, \ldots$
4: $4,8,12,16,20,24,28,32,36, \ldots$.

Ordering Fractions 2

$$
\begin{array}{lllll}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \quad \begin{array}{l}
\text { Use } 36 \text { as the COMMON } \\
\text { DENOMINATOR. }
\end{array}
\end{array}
$$

Ordering Fractions 2

Nix

Ordering Fractions 2

$$
\begin{array}{rlll}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \\
\times\left.\right|_{4} & \times\left.\right|_{3} & \times\left.\right|_{6} & \times\left.\right|_{9} \\
\square & \square & \square & \square \\
\hline & \square & \begin{array}{ll}
36 & \\
36
\end{array}
\end{array}
$$

Find the number that you: need to multiply the $\$$ K DENOMINATORS by to get 36 .

Ordering Fractions 2

$$
\begin{array}{rlll}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \\
\times\left.\right|_{4} & \times\left.\right|_{3} & \times\left.\right|_{6} & \times\left.\right|_{9} \\
\square & \square & \square & \square \\
\hline & \square & = & = \\
36 & 36 & 36 & 36
\end{array}
$$

Multiply the NUMERATORS by the same amount as,youk multiplied the DENOMINATORS

Ordering Fractions 2

$$
\begin{array}{rlll}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \\
\times\left.\right|_{4} & \times\left.\right|_{3} & \times\left.\right|_{6} & \times\left.\right|_{9} \\
\frac{20}{36} & \frac{21}{36} & \frac{18}{36} & \frac{27}{36}
\end{array}
$$

Ordering Fractions 2

$$
\begin{array}{rrrr}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \\
\times\left.\right|_{4} & \times\left.\right|_{3} & \times\left.\right|_{6} & \times\left.\right|_{9} \\
\frac{20}{36} & \frac{21}{36} & \frac{18}{36} & \frac{27}{36} \\
\begin{array}{|l|l|l|l|}
\hline \text { 2nd } & \text { 3rd } & \text { 1st } & 4 \text { th } \\
\hline
\end{array}
\end{array}
$$

Ordering Fractions 2

$$
\begin{array}{lllllll}
\frac{5}{9} & \frac{7}{12} & \frac{3}{6} & \frac{3}{4} \\
\times\left.\right|_{4} & \times\left.\right|_{3} & \times\left.\right|_{6} & \times\left.\right|_{9} \\
\frac{20}{36} & \frac{21}{36} & \frac{18}{36} & \frac{27}{36} & \text { putting them in order.... } \\
2 & 3 & 1 & 4 & \frac{18}{36} & \frac{21}{36} & \frac{27}{36}
\end{array}
$$

Ordering Fractions 2

Ordering Fractions 2

Learning Objective 5
onsolidate changing an
improper Fraction to a mixed number and vice versa

FRACTIONS

$\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{4}{4}=1$

$\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{5}{4}=1 \frac{1}{4}$

FRACTIONS

FRACTIONS

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

| $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| :--- | :--- | :--- | | $\frac{1}{3}$ |
| :--- |

Improper Fraction

$$
\frac{7}{3}
$$

$2 \frac{1}{3}$
Mixed Number

FRACTIONS

| $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |
| :--- | :--- | :--- | :--- | :--- |\quad| $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |
| :---: | :---: | :---: |

Improper Fraction

Mixed Number
$\frac{8}{5} \quad 1 \frac{3}{5}$

FRACTIONS

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Improper Fraction Mixed Number
$\frac{15}{6}=2 \frac{3}{6}$

FRACTIONS

| $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Improper Fraction Mixed Number

$$
\frac{15}{4}=3 \frac{3}{4}
$$

To convert an improper fraction to a mixed number what do you do?

Numerator \div Denominator

If it isn't a whole number then

keep the denominator the same.

$$
\begin{array}{llll}
& 3 \frac{1}{3} & \frac{13}{6} & \\
\frac{8}{5} & \frac{10}{3} & & \frac{7}{4} \\
2 \frac{1}{6} & 1 \frac{3}{4} & 1 \frac{3}{5} &
\end{array}
$$

Learning Objective

Revise knowledge of converting Fractions, Decimals and
ercentages.

The connection between fractions, decimals and percentages.

Share into 100 equal parts.

Fraction Decimal \%

$$
\frac{1}{100}
$$

$$
2
$$

$$
\frac{L}{100}
$$

0.02

2\%
$\frac{3}{100}$
$\frac{4}{100}$
$\frac{5}{100}$
0.05

5\%

The connection between fractions, decimals and percentages.
Share into 100 equal parts.

Fraction Decimal \%
$\frac{6}{100} \quad 0.06 \quad 6 \%$

$$
\frac{7}{100} \quad 0.07 \quad 7 \%
$$,

0.09

9\%

$$
\frac{1}{10} \frac{10}{100} \quad 0.10 \quad 10 \%
$$

The connection between fractions, decimals and percentages.
Share into 100 equal parts

The connection between fractions, decimals and percentages.
Share into 100 equal parts

Fraction Decimal \%

TENTHSANDFIFTHS

Now convert these to decimals...

25\%
 20\%
 80\%
 43\%

Now convert these to Fractions...

25\%
 20\%
 80\%
 43\%

Can you reduce them to their simplest form?

$$
\begin{array}{cc}
25 \% & 20 \% \\
80 \% & 43 \%
\end{array}
$$

Convert these Decimals to

$$
\begin{gathered}
\text { a Fraction and a } \\
\text { Percentage... }
\end{gathered}
$$

$$
\begin{array}{cc}
0.50 & 0.75 \\
0.40 & 0.64
\end{array}
$$

